1/31/2021 C Programming-Conditional Processing

Hands On C
500 Working Programs

Conditional Processing

Understanding Conditional Processing

localhost:8888/notebooks/C Programming-Conditional Processing.ipynb 1/22

1/31/2021 C Programming-Conditional Processing
In [1]: #include <stdio.h>

int main(void)

{
int age = 22;
if (age >= 21)
printf("Going to Vegas!\n");
else
printf("Going to Disneyland!\n");
}

Going to Vegas!

Understanding the C Represents True Values

localhost:8888/notebooks/C Programming-Conditional Processing.ipynb 2/22

1/31/2021 C Programming-Conditional Processing

In [2]: #include <stdio.h>

int main(void)

{
if (1)
printf("1 is always true\n");
if (1-0 == 1)
printf("The expression equals 1 and 1 is true\n");
if (1-0)
printf("The expression by itself equals 1 and 1 is true\n");
if (9)
printf("This statement will not appear\n");
}

1 is always true
The expression equals 1 and 1 is true
The expression by itself equals 1 and 1 is true

Understanding Simple and Compound
Statements

Simple statement is a single statement:

age = 21;

Compound statements appear within braces
3/22

localhost:8888/notebooks/C Programming-Conditional Processing.ipynb

1/31/2021 C Programming-Conditional Processing

{
int age = 21;

printf("She is %d\n" age);
}
In [3]: #include <stdio.h>

int main(void)

{
int a =9, b; // this is a simple statement
{
b = a++; // this is a compound statement
printf("a %d b %d", a, b);
}
}
alboeo

C's if Statement uses Simple and Compound
Statements

localhost:8888/notebooks/C Programming-Conditional Processing.ipynb 4/22

1/31/2021

In [4]:

In [5]:

C Programming-Conditional Processing
#include <stdio.h>

int main(void)

{
int pet = 1; // 1 for dog @ for cat
if (pet)
printf("Dogs are great!");
}

Dogs are great!

#include <stdio.h>

int main(void)

{
int pet = 1;
if (pet)
{
printf("Dogs are great\n");
printf("I have 3 dogs\n");
}
}

Dogs are great
I have 3 dogs

localhost:8888/notebooks/C Programming-Conditional Processing.ipynb

5/22

1/31/2021 C Programming-Conditional Processing

Testing for Equality

The single equal sign = is the C assignment operator

The double equal signs == is the test for equality

In [6]: #include <stdio.h>

int main(void)

{
unsigned int a = 2, b = 2;
if (a == b)
printf("a and b are equal\n");
}

a and b are equal

In [7]: #include <stdio.h>

int main(void)

{
int a = 9;
if (a = 2) // Bug
printf("a is equal to 2\n");
}

a is equal to 2

localhost:8888/notebooks/C Programming-Conditional Processing.ipynb 6/22

1/31/2021 C Programming-Conditional Processing

Understanding Relational Tests

Operator Purpose

> Greater than

< Less than

>= Greater than or equal to
<= Less than or equal to

In [8]: #include <stdio.h>

int main(void)

{
int a =2, b = 3;
if (a >=b)
printf("a %d is bigger than b %d\n", a, b);
if (a < b)
printf("a %d is less than b %d\n", a, b);
}

a 2 is less than b 3

Performing a Logical AND Operation to Test Two
Conditions

localhost:8888/notebooks/C Programming-Conditional Processing.ipynb 7122

1/31/2021 C Programming-Conditional Processing

// the double ampersand && is the C AND operator
if ((today == Friday) && (hour > 5))
printf("Happy Hour");
In [9]: #include <stdio.h>

int main(void)

{
int day = 5; // Sunday 6, Monday 1, Tuesday 2, Wednesday 3, Thursday 4, Frida
int hour = 6;
if ((day == 5) && (hour == 6))
printf("It\'s Happy Hour");
}

It's Happy Hour

Performing a Logical AND Operation to Test Two
Conditions

// the double pipe symbol || is the C OR operator

if ((today == Saturday) || (today == Sunday))
printf("Turn on the football game");

localhost:8888/notebooks/C Programming-Conditional Processing.ipynb 8/22

1/31/2021 C Programming-Conditional Processing

In [10]: #include <stdio.h>

int main(void)

{
int day = @; // Sunday 6, Monday 1, Tuesday 2, Wednesday 3, Thursday 4, Frida
if ((day == @) [| (day == 6))
printf("It\'s time for football");
}

Understanding C's Logical Not Operator

// The exclamation mark ! is C's Not Operator

if (! happy)
printf("Cheer up\n");

localhost:8888/notebooks/C Programming-Conditional Processing.ipynb 9/22

1/31/2021 C Programming-Conditional Processing
In [11]: #include <stdio.h>
int main(void)
{
int happy = ©; // 6 is sad, 1 is happy

if (! happy)
printf("Don\'t worry, be happy!\n");

if (! 9)
printf("Remember 0 is false in C\n");

Don't worry, be happy!
Remember @ is false in C

Testing the Result of an Assignment

localhost:8888/notebooks/C Programming-Conditional Processing.ipynb 10/22

1/31/2021 C Programming-Conditional Processing

In [12]: #include <stdio.h>
int main(void)
{
int pet, dog = 1, cat = 9;

if ((pet = dog) == 1)
printf("You got a dog!\n");

if (pet = dog) // This can be a tricky error
printf("Did you test for a dog or assign the value dog to pet?\n");

if (pet == dog)
printf("Testing the value of pet says dog!");

You got a dog!
Did you test for a dog or assign the value dog to pet?

Testing the value of pet says dog!

Revisiting Compound Statements

localhost:8888/notebooks/C Programming-Conditional Processing.ipynb 11/22

1/31/2021 C Programming-Conditional Processing
In [13]: #include <stdio.h>

int main(void)

{
int pet = 1; // 1 for dog, @ for cat

if (pet == 1)
{
printf("You got a dog\n");
printf("Dogs are great\n");

}
if (pet == 0)
{
printf("You got a cat\n");
printf("Cats are great\n");
}

You got a dog
Dogs are great

Delcaring Variables within Compound
Statements
In [14]: #include <stdio.h>

int main(void)
{

int pet = 1; // 1 for dogs, @ for cat

if (pet == 1)

{
int numberOfDogs = 3;

printf("You have a dog! Actually you have %d\n", numberOfDogs);

}

You have a dog! Actually you have 3

localhost:8888/notebooks/C Programming-Conditional Processing.ipynb 12/22

1/31/2021 C Programming-Conditional Processing

Using Indentation to Improve Readability

In [15]: #include <stdio.h>
int main(void)
{
int pet = 1; // 1 for dogs, © for cat

if (pet == 1)
{

int numberOfDogs = 3;

printf("You have a dog! Actually you have %d\n", numberOfDogs);

}
}

You have a dog! Actually you have 3

In [16]: #include <stdio.h>
int main(void)
{
int pet = 1; // 1 for dogs, @ for cat
if (pet == 1)
{
int numberOfDogs = 3;
printf("You have a dog! Actually you have %d\n", numberOfDogs);
}

You have a dog! Actually you have 3

localhost:8888/notebooks/C Programming-Conditional Processing.ipynb 13/22

1/31/2021

In [17]:

In [18]:

C Programming-Conditional Processing

Be Careful Testing Floating-Point Values

#include <stdio.h>

int main(void)

{
float taxRate = 0.65;
if (taxRate == 0.65)
printf("Tax rate is low %f\n", taxRate);
printf("Tax Rate %8.101f\n", taxRate);
}

Tax Rate 0.6499999762

#include <stdio.h>

int main(void)

{
float taxRate = 0.65;
if ((9.65- taxRate) < 0.001)
printf("Tax rate is low %f\n", taxRate);
printf("Tax Rate %8.101f\n", taxRate);
}

Tax rate is low 0.650000
Tax Rate 0.6499999762

Understanding if-else Statements

localhost:8888/notebooks/C Programming-Conditional Processing.ipynb

14/22

1/31/2021 C Programming-Conditional Processing
In [19]: #include <stdio.h>
int main(void)
¢ int pet = 1; // 1 for dogs, 6 for cats
if (pet == 1)
printf("You have a dog!\n");

else
printf("You have a cat\n");

You have a dog!

Using Compound Statements with if-else

localhost:8888/notebooks/C Programming-Conditional Processing.ipynb 15/22

1/31/2021 C Programming-Conditional Processing

In [20]: #include <stdio.h>

int main(void)

{

int pet = 1; // 1 for dogs, 6 for cats

if (pet == 1)
{
printf("You have a dog!\n");
printf("Dogs are great\n");

¥
else
{
printf("You have a cat\n");
printf("Cats are great!\n");
}

You have a dog!
Dogs are great

Be Careful of if-if-else Statements

localhost:8888/notebooks/C Programming-Conditional Processing.ipynb

16/22

1/31/2021

In [21]:

In [22]:

C Programming-Conditional Processing
#include <stdio.h>

int main(void)

{
int pet = 1; // 1 for dogs, 6 for cats
int numberOfDogs = 3;

if (pet == 1)
if (numberOfDogs > 5)
printf("You have many dogs\n");
else
printf("You have a cat\n");

You have a cat

#include <stdio.h>

int main(void)

{
int pet = 1; // 1 for dogs, 6 for cats
int numberOfDogs = 3;

if (pet == 1)
{
if (numberOfDogs > 5)
printf("You have many dogs\n");

}

else
printf("You have a cat\n");

localhost:8888/notebooks/C Programming-Conditional Processing.ipynb

17/22

1/31/2021 C Programming-Conditional Processing

Testing Multiple Conditions Using if-else if

In [23]: #include <stdio.h>

int main(void)
{
int pet = 1; // 6 for cats, 1 for dogs, 2 for horses, 3 for birds

if (pet == 0)
printf("Cats!\n");

else if (pet == 1)
printf("Dogs!\n");

else if (pet == 2)
printf("Horses!\n");

else if (pet == 3)
printf("Birds!\n");

else
printf("You should get a pet\n");

Dogs!

Testing Multiple Consditions Using switch

localhost:8888/notebooks/C Programming-Conditional Processing.ipynb 18/22

1/31/2021 C Programming-Conditional Processing
In [24]: #include <stdio.h>
int main(void)
{

char letter = 'A’;

switch (letter) {

case 'A':
case 'E':
case 'I':
case '0':
case 'U': printf("%c is a vowel!", letter);

A is a vowell!

Understanding the break Statement

localhost:8888/notebooks/C Programming-Conditional Processing.ipynb 19/22

1/31/2021

In [25]: #include <stdio.h>

int main(void)

{

char letter = 'A’;

switch (letter) {

The
The
The
The
The

case 'A':
case 'E':
case 'I
case '0':
case 'U

letter
letter
letter
letter
letter

> > r>r

printf("The
printf("The

: printf("The

printf("The

: printf("The

matches
matches
matches
matches
matches

cCoHMmD>X>

In [26]: #include <stdio.h>

int main(void)

{

char letter

= IAI;

switch (letter) {

case 'A':
case 'E':
case 'I':
case '0':
case 'U':

printf("The
break;
printf("The
break;
printf("The
break;
printf("The
break;
printf("The
break;

The letter A matches A

C Programming-Conditional Processing

letter
letter
letter
letter
letter

letter

letter

letter

letter

letter

localhost:8888/notebooks/C Programming-Conditional Processing.ipynb

%C
%C
%C
%C
%C

matches A\n",
matches E\n",
matches I\n",
matches 0\n",
matches U\n",

matches A\n",
matches E\n",
matches I\n",
matches 0O\n",

matches U\n",

letter);
letter);
letter);
letter);
letter);

letter);
letter);
letter);
letter);

letter);

20/22

1/31/2021 C Programming-Conditional Processing

Understanding the default Statement in
switch

In [27]: #include <stdio.h>

int main(void)

{
char letter = 'A’;
switch (letter) {
case 'A':
case 'E':
case 'I':
case '0':
case 'U': printf("%c is a vowell!"”, letter);
break;
default: printf("%c is a consonant!", letter);
}
}

A is a vowel!

localhost:8888/notebooks/C Programming-Conditional Processing.ipynb 21/22

1/31/2021 C Programming-Conditional Processing

What You will Learn Next

Programs often must repeat a set of instructions, such as displaying a menu
until the user selects quit or looping for a set of values. Such processing is
called iterative processing.

while (fgets(buffer, sizeof(buffer), fp) != NULL)
puts(fgets);

for (int i = 0; i < 10; i++)
printf("%d ", i);

do {

printf("Hello, world\n");
} while (forever);

localhost:8888/notebooks/C Programming-Conditional Processing.ipynb 22/22

